电子圈

IC热门型号:
您所在的位置:首页 > 电子圈 > 技术资料 > 一种基于大功率LED的单星模拟器光源控制系统设计剖析

一种基于大功率LED的单星模拟器光源控制系统设计剖析

出处 : 互联网 发布时间 : 2019/04/03 关键词: LED 模拟器 阅读 : 9

摘要:单星模拟器是星敏感器的主要地面标定设备之一,其作为瞄准系统的一部分,提供一束平行光供星敏感器测量,用来模拟无穷远处的恒星所发出的平行光。

单星模拟器是星敏感器的主要地面标定设备之一,其作为瞄准系统的一部分,提供一束平行光供星敏感器测量,用来模拟无穷远处的恒星所发出的平行光。为了能在实验室中标定星敏感器,通常提供一个模拟星,星模拟器就是模拟星的设备,它提供相对被测物体无限远的点光源作为模拟星,对其大小、光度(星等值)、光谱特性、色温类型等进行严格模拟,以便对星敏感器的探测能力、空间分辨率等进行地面定标,进而确定星敏感器光轴的空间位置。

由于过去研制的单星模拟器的控制系统多采用单片机和AD/DA转换器实现,虽然其精度高,但体积大、控制复杂、成本高;由于光源多采用卤钨灯,它不但体积大、而且发热量大、寿命短,长期使用稳定性不够。本文提出了一种采用大功率LED做点光源,用专用的LED控制芯片代替复杂的单片机电路的可调光源控制电路,实际使用效果良好,具有体积小、控制简单、稳定性高、寿命长,而且精度高的优点。

1 光源系统的组成

大功率LED由于亮度高和寿命长的优点,在室内外装饰、特种照明方面已获得越来越广泛的应用。本系统采用最常用的3 W LED,光源亮度和稳定?#36828;?#28385;足要求。

单星模拟器的光源系统由恒稳光源、光学系统、机械接口及安装微调支架系统组成。其系统结构如图1 所示。LED光源输出不同档位光强的光线,经过一分二(各50%)的分光系统后,其中一部分光进入闭环控制,另一部分光用于后续光学系统,这部分光经聚光镜、滤光片、衰减片后在毛玻璃上汇聚一亮斑,通过星点板上的小孔成为一个点光源。由于小孔位于平行光管的前焦面上,具有不同亮度幅度(用以表征不同星等)的星点经平行光管,在联接的星敏感器光学系统的入瞳处产生模拟的无穷远平行光,从而实现对星光的模拟。

一种基于大功率LED的单星模拟器光源控制系统设计剖析

2 光源控制系统的实现

为了控制光源的稳定性,系统采用负反馈电路形成闭环控制。其原理图如图2所示。

一种基于大功率LED的单星模拟器光源控制系统设计剖析

工作原理如下:当大功率LED的亮度变亮时,光电二极管接收到的光能量也随之增大,光电二极管产生的光电流变大,光电放大电路通过一个采样电阻对该光电流进行采样并通过放大电?#26041;?#30005;压放大,此电压就是反馈电压。反馈电压随LED亮度同向变化,反馈控制驱动电路根据反馈电压控制输出使LED电流反向变化,LED亮度朝反向变化。系统构成一个闭环控制,能够使LED维持在一个已设定的亮度。

大功率LED控制电路可以分为两个主要部分:(1)采样及放大电路,实现光电流的采样及电压放大,并将此电压反馈给下级控制电路。(2)反馈控制驱动电路,根据放大电路反馈的电压信号调整输出给LED两端的电压,从而控制LED的亮度。

图3是采样及放大电路。光电二极管D2接收到发光二极管LED发射的光后,经过R9产生微弱的微安级电流,此电流经过采样电阻R9后产生的微小电压不能直接反馈给下级控制电路。根据下级电路输入要求,需将此采样电压放大至5 V左右。由于光电二极管产生的电流很小,因此运算放大器U3采用高阻型单电源低电压FET运放。其输入阻抗非常高,适合微弱信号的放大,能将输入的微弱电压信号放大到伏级。放大倍数可通过电阻R6和R10调整,从而调整反馈给下一级的电压Vadj。

一种基于大功率LED的单星模拟器光源控制系统设计剖析

图4所示为反馈控制驱动电路。其控制芯片采用专门针对大功率LED照明驱动应用的集成电路PT4105。PT4105是一款固定频率、电压模式的降压开关稳压电路,其输入电压范围宽(6 V~18 V),内含1 A输出电流能力的功率MOSFET,故3 W(700 mA)的LED驱动没有问题,内部采用PWM控制,反馈电压仅为200 mV,具有很高的转换效率,内含欠压锁定、过热保护、限流保护等功能,应用设计方便,外围电路简单。通过外接的感应电阻,PT4105可用作高精度恒流源,采用固定频率的电压模式来调节LED电流,其200 mV的低反馈电压可?#26723;?#21151;耗和提高效率。

一种基于大功率LED的单星模拟器光源控制系统设计剖析

本系统采用PT4105芯片,一是因为其控制的光源稳定性好;二是采用SOIC8封装,尺寸小,所以整个控制系统可以做得非常小。采用可变直流电压的方式来调整LED的电流从而实现LED的亮度控制。用PT4105实现单颗3 W大功率LED驱动方案,采用12 V电源供电,其转换效率可在85%以上。

如图4所示。当大功率LED变亮时光电二极管D2接收到的光能量变多,产生的光电流变大,使采样电阻R9上的电压变大,通过运算放大器放大后使反馈电压Vadj变大,反馈控制驱动电路根据此反馈电压调整LED的电流使LED电流减少,LED变暗。反之亦然。系统构成一个闭环控制,使LED维持在一个已设定的亮度。调节电位器R6和R10可以预设定LED的亮度。由于反馈电压Vadj在0~5 V的范围内变化,所以R1和R3的选择应该符合R1:R3=1:24。

通过在负载通?#20998;?#20018;接反馈电阻R4,在负反馈回?#20998;?#30417;控反馈电阻上的电压降并控制占空比,就能得到恒流输出的电路。所以PT4105的输出电流即LED实际的工作电流可由反馈电阻R4确定。正常工作时,PT4105的FB端电压恒定为VFB值(200 mV),且输入电流为0。因此,流过LED的电流与流过R4的电流相等。

一种基于大功率LED的单星模拟器光源控制系统设计剖析

根据式(1)可以计算出:当R4=0.33 Ω且输入的电流为0时,LED的恒定电流为0.6 A。此电流就是LED实?#20351;?#20316;的最大电流,没有超过其极限电流0.7 A。

3 实验

在暗?#19968;?#22659;下,采用微弱光照度计NDL-300型进行实验。匹配好电阻R6及R10后,使星模拟器输出平行光的照度与-2等星等一致,即1.6×10-5lx。

在正常温度下,连续工作8小时工作,每隔10 min测量一次照度并记录,则在常温下LED光源的稳定性如图5所示。可见在大部分时间中光源稳定在1.6×10-5lx,最大值1.68,最小值1.52,其稳定性的误差≤±5%。

一种基于大功率LED的单星模拟器光源控制系统设计剖析

实验结果表明,通过该控制系统,单星模拟器可?#36828;?#26143;等进行精确的模拟,该光源满足单星模拟器系统设计的要求。

基于大功率LED的可调稳定光源控制电路已成功应用到某国防工程项目中,具有精度高、简单实用、工作稳定、控制精度高的特点,在需要控制光源强度的领域内具有较强的实用价值。

免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
云南快乐十分复试奖金